Created
February 6, 2026 00:32
-
-
Save steveroush/dede775d4e086df566f75695c9f2a765 to your computer and use it in GitHub Desktop.
Graphviz / dot init_rank test: init_rank_3.gv
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| /********************************************************************* | |
| as of version <<dot - graphviz version 14.1.3~dev.20260124.0732 (20260124.0732)>> | |
| this file: init_rank_3.gv | |
| triggers the 'trouble in init_rank' bug | |
| (see https://gitlab.com/graphviz/graphviz/-/issues/1213) | |
| ***********************************************************************/ | |
| /*********************************************************************** | |
| gvstats.gvpr output: | |
| file: init_rank_3.gv | |
| nodes: 64 | |
| edges: 77 | |
| clusters: 54 | |
| connected graphs: 6 | |
| HTML labels: 0 | |
| record nodes: 0 | |
| (degree is the count of edges connecting to a node) | |
| degree: 1 node count: 28 | |
| degree: 2 node count: 17 | |
| degree: 3 node count: 6 | |
| degree: 4 node count: 3 | |
| degree: 5 node count: 6 | |
| degree: 6 node count: 1 | |
| degree: 7 node count: 2 | |
| degree: 12 node count: 1 | |
| ***********************************************************************/ | |
| digraph anonymous { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| subgraph cluster__1 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.1" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__2 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.2" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__3 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.3" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__4 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.4" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__5 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.5" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__6 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.6" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__7 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.7" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__8 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.8" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__9 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.9" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__10 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.10" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__11 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.11" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__12 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.12" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__13 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.13" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__14 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.14" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__15 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.15" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__16 { | |
| graph [bgcolor="#ffebee", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.16" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__17 { | |
| graph [bgcolor="#ffebee", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.17" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__18 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.18" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__19 { | |
| graph [bgcolor="#ffebee", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.19" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__20 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.20" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__21 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.21" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__22 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.22" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__23 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.23" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__24 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.24" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__25 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.25" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__26 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.26" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__27 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.27" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__28 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.28" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__29 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.29" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__30 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.30" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__31 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.31" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__32 { | |
| graph [bgcolor="#ffebee", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.32" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__33 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.33" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__34 { | |
| graph [bgcolor="#ffebee", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.34" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| "n.35" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| "n.36" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| "n.37" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| "n.38" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| "n.39" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__35 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.40" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__36 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.41" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__37 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.42" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__38 { | |
| graph [bgcolor="#ffebee", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.43" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| "n.44" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| "n.45" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| "n.46" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__39 { | |
| graph [bgcolor="#ffebee", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.47" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| "n.48" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__40 { | |
| graph [bgcolor="#ffebee", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.49" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__41 { | |
| graph [bgcolor="#ffebee", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.50" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| "n.51" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__42 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.52" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__43 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.53" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__44 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.54" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__45 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.55" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__46 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.56" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__47 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.57" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__48 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.58" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__49 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.59" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__50 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.60" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__51 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.61" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__52 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.62" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__53 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.63" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| subgraph cluster__54 { | |
| graph [bgcolor="#FFFFFF", | |
| charset="UTF-8", | |
| fontname=Menlo, | |
| labelloc=b, | |
| margin=50, | |
| rankdir=RL, | |
| splines=spline | |
| ]; | |
| "n.64" [color="#e1bee7", | |
| label="\N", | |
| shape=rectangle, | |
| style=filled]; | |
| } | |
| "n.19" -> "n.18" [arrowsize=0.50, | |
| label=Edg1]; | |
| "n.26" -> "n.25" [arrowsize=0.50, | |
| label=Edg2]; | |
| "n.29" -> "n.28" [arrowsize=0.50, | |
| label=Edg3]; | |
| "n.33" -> "n.2" [arrowsize=0.50, | |
| label=Edg4]; | |
| "n.34" -> "n.6" [arrowsize=0.50, | |
| label=Edg5]; | |
| "n.34" -> "n.20" [arrowsize=0.50, | |
| label=Edg6]; | |
| "n.35" -> "n.29" [arrowsize=0.50, | |
| label=Edg7]; | |
| "n.36" -> "n.4" [arrowsize=0.50, | |
| label=Edg8]; | |
| "n.36" -> "n.10" [arrowsize=0.50, | |
| label=Edg9]; | |
| "n.36" -> "n.11" [arrowsize=0.50, | |
| label=Edg10]; | |
| "n.36" -> "n.13" [arrowsize=0.50, | |
| label=Edg11]; | |
| "n.37" -> "n.1" [arrowsize=0.50, | |
| label=Edg12]; | |
| "n.37" -> "n.10" [arrowsize=0.50, | |
| label=Edg13]; | |
| "n.37" -> "n.23" [arrowsize=0.50, | |
| label=Edg14]; | |
| "n.38" -> "n.8" [arrowsize=0.50, | |
| label=Edg15]; | |
| "n.38" -> "n.12" [arrowsize=0.50, | |
| label=Edg16]; | |
| "n.38" -> "n.17" [arrowsize=0.50, | |
| label=Edg17]; | |
| "n.38" -> "n.21" [arrowsize=0.50, | |
| label=Edg18]; | |
| "n.38" -> "n.35" [arrowsize=0.50, | |
| label=Edg19]; | |
| "n.38" -> "n.37" [arrowsize=0.50, | |
| label=Edg20]; | |
| "n.38" -> "n.39" [arrowsize=0.50, | |
| label=Edg21]; | |
| "n.40" -> "n.3" [arrowsize=0.50, | |
| label=Edg22]; | |
| "n.41" -> "n.6" [arrowsize=0.50, | |
| label=Edg23]; | |
| "n.41" -> "n.7" [arrowsize=0.50, | |
| label=Edg24]; | |
| "n.41" -> "n.16" [arrowsize=0.50, | |
| label=Edg25]; | |
| "n.41" -> "n.30" [arrowsize=0.50, | |
| label=Edg26]; | |
| "n.41" -> "n.32" [arrowsize=0.50, | |
| label=Edg27]; | |
| "n.44" -> "n.43" [arrowsize=0.50, | |
| label=Edg28]; | |
| "n.45" -> "n.5" [arrowsize=0.50, | |
| label=Edg29]; | |
| "n.45" -> "n.15" [arrowsize=0.50, | |
| label=Edg30]; | |
| "n.45" -> "n.17" [arrowsize=0.50, | |
| label=Edg31]; | |
| "n.45" -> "n.22" [arrowsize=0.50, | |
| label=Edg32]; | |
| "n.45" -> "n.44" [arrowsize=0.50, | |
| label=Edg33]; | |
| "n.47" -> "n.2" [arrowsize=0.50, | |
| label=Edg34]; | |
| "n.47" -> "n.9" [arrowsize=0.50, | |
| label=Edg35]; | |
| "n.47" -> "n.14" [arrowsize=0.50, | |
| label=Edg36]; | |
| "n.47" -> "n.16" [arrowsize=0.50, | |
| label=Edg37]; | |
| "n.47" -> "n.20" [arrowsize=0.50, | |
| label=Edg38]; | |
| "n.47" -> "n.22" [arrowsize=0.50, | |
| label=Edg39]; | |
| "n.47" -> "n.32" [arrowsize=0.50, | |
| label=Edg40]; | |
| "n.47" -> "n.33" [arrowsize=0.50, | |
| label=Edg41]; | |
| "n.47" -> "n.37" [arrowsize=0.50, | |
| label=Edg42]; | |
| "n.47" -> "n.39" [arrowsize=0.50, | |
| label=Edg43]; | |
| "n.47" -> "n.46" [arrowsize=0.50, | |
| label=Edg44]; | |
| "n.47" -> "n.48" [arrowsize=0.50, | |
| label=Edg45]; | |
| "n.49" -> "n.5" [arrowsize=0.50, | |
| label=Edg46]; | |
| "n.49" -> "n.7" [arrowsize=0.50, | |
| label=Edg47]; | |
| "n.49" -> "n.31" [arrowsize=0.50, | |
| label=Edg48]; | |
| "n.49" -> "n.37" [arrowsize=0.50, | |
| label=Edg49]; | |
| "n.50" -> "n.9" [arrowsize=0.50, | |
| label=Edg50]; | |
| "n.50" -> "n.14" [arrowsize=0.50, | |
| label=Edg51]; | |
| "n.50" -> "n.17" [arrowsize=0.50, | |
| label=Edg52]; | |
| "n.50" -> "n.30" [arrowsize=0.50, | |
| label=Edg53]; | |
| "n.51" -> "n.50" [arrowsize=0.50, | |
| label=Edg54]; | |
| "n.52" -> "n.15" [arrowsize=0.50, | |
| label=Edg55]; | |
| "n.52" -> "n.22" [arrowsize=0.50, | |
| label=Edg56]; | |
| "n.52" -> "n.24" [arrowsize=0.50, | |
| label=Edg57]; | |
| "n.52" -> "n.35" [arrowsize=0.50, | |
| label=Edg58]; | |
| "n.52" -> "n.43" [arrowsize=0.50, | |
| label=Edg59]; | |
| "n.54" -> "n.53" [arrowsize=0.50, | |
| label=Edg60]; | |
| "n.56" -> "n.1" [arrowsize=0.50, | |
| label=Edg61]; | |
| "n.56" -> "n.17" [arrowsize=0.50, | |
| label=Edg62]; | |
| "n.56" -> "n.27" [arrowsize=0.50, | |
| label=Edg63]; | |
| "n.56" -> "n.33" [arrowsize=0.50, | |
| label=Edg64]; | |
| "n.56" -> "n.37" [arrowsize=0.50, | |
| label=Edg65]; | |
| "n.57" -> "n.9" [arrowsize=0.50, | |
| label=Edg66]; | |
| "n.57" -> "n.23" [arrowsize=0.50, | |
| label=Edg67]; | |
| "n.57" -> "n.42" [arrowsize=0.50, | |
| label=Edg68]; | |
| "n.57" -> "n.44" [arrowsize=0.50, | |
| label=Edg69]; | |
| "n.57" -> "n.55" [arrowsize=0.50, | |
| label=Edg70]; | |
| "n.58" -> "n.15" [arrowsize=0.50, | |
| label=Edg71]; | |
| "n.58" -> "n.27" [arrowsize=0.50, | |
| label=Edg72]; | |
| "n.59" -> "n.33" [arrowsize=0.50, | |
| label=Edg73]; | |
| "n.60" -> "n.2" [arrowsize=0.50, | |
| label=Edg74]; | |
| "n.61" -> "n.33" [arrowsize=0.50, | |
| label=Edg75]; | |
| "n.62" -> "n.33" [arrowsize=0.50, | |
| label=Edg76]; | |
| "n.64" -> "n.63" [arrowsize=0.50, | |
| label=Edg77]; | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment