Remove evil parts of answer.
import outlines
qwen_model = outlines.models.transformers("Qwen/Qwen2.5-14B-Instruct", model_kwargs=dict(load_in_8bit=True))
def ask_non_evil_question(prompt, pattern, model=qwen_model, max_tokens=100):| import os | |
| import sys | |
| with open(sys.argv[0]) as f: | |
| code = f.read() # read the code of this file ASAP, for logging | |
| with open('optimizer.py', 'r', encoding='utf-8') as f: | |
| source_code = f.read() | |
| code += source_code | |
| with open('model.py', 'r', encoding='utf-8') as f: |
| import os | |
| import sys | |
| with open(sys.argv[0]) as f: | |
| code = f.read() # read the code of this file ASAP, for logging | |
| import uuid | |
| import time | |
| import contextlib | |
| from dataclasses import dataclass | |
| import math | |
| from pathlib import Path |
| import os | |
| import sys | |
| with open(sys.argv[0]) as f: | |
| code = f.read() # read the code of this file ASAP, for logging | |
| import uuid | |
| import time | |
| import contextlib | |
| from dataclasses import dataclass | |
| import math | |
| from pathlib import Path |
| import os | |
| import sys | |
| with open(sys.argv[0]) as f: | |
| code = f.read() # read the code of this file ASAP, for logging | |
| import uuid | |
| import time | |
| import contextlib | |
| from dataclasses import dataclass | |
| from pathlib import Path |
| import os | |
| import sys | |
| with open(sys.argv[0]) as f: | |
| code = f.read() # read the code of this file ASAP, for logging | |
| import uuid | |
| import glob | |
| import time | |
| import contextlib | |
| from dataclasses import dataclass | |
| from typing import Optional |
| Running pytorch 2.6.0.dev20241126+cu124 compiled for CUDA 12.4 | |
| nvidia-smi: | |
| Fri Nov 29 00:54:16 2024 | |
| +-----------------------------------------------------------------------------------------+ | |
| | NVIDIA-SMI 550.76 Driver Version: 550.76 CUDA Version: 12.4 | | |
| |-----------------------------------------+------------------------+----------------------+ | |
| | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | |
| | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | |
| | | | MIG M. | | |
| |=========================================+========================+======================| |
| import random | |
| import collections | |
| def trial(first_to=2): | |
| flips = [random.choice([True, False]) for _ in range(100)] | |
| alice_flip_checks = flips | |
| bob_flip_checks = [flips[i] for i in range(1, len(flips), 2)] + [flips[i] for i in range(0, len(flips), 2)] | |
| # get second_head | |
| try: |
| from datasets import Dataset, load_from_disk | |
| from transformers import TrainingArguments | |
| from transformers.trainer_utils import EvalLoopOutput | |
| from unsloth import FastLanguageModel | |
| import random | |
| from huggingface_hub import create_repo | |
| from scipy.spatial.distance import cosine | |
| from sentence_transformers import SentenceTransformer | |
| import statistics |
| # Huge Pattern | |
| `0(0(0([1235679]-(0(2-(0[1-9]|1\\d|2[0-8])|[13578]-(0[1-9]|3[01]|[12]\\d)|[469]-(0[1-9]|30|[12]\\d))|1(1-(0[1-9]|30|[12]\\d)|[02]-(0[1-9]|3[01]|[12]\\d)))|[48]-(0(2-(0[1-9]|[12]\\d)|[13578]-(0[1-9]|3[01]|[12]\\d)|[469]-(0[1-9]|30|[12]\\d))|1(1-(0[1-9]|30|[12]\\d)|[02]-(0[1-9]|3[01]|[12]\\d))))|[13579]([01345789]-(0(2-(0[1-9]|1\\d|2[0-8])|[13578]-(0[1-9]|3[01]|[12]\\d)|[469]-(0[1-9]|30|[12]\\d))|1(1-(0[1-9]|30|[12]\\d)|[02]-(0[1-9]|3[01]|[12]\\d)))|[26]-(0(2-(0[1-9]|[12]\\d)|[13578]-(0[1-9]|3[01]|[12]\\d)|[469]-(0[1-9]|30|[12]\\d))|1(1-(0[1-9]|30|[12]\\d)|[02]-(0[1-9]|3[01]|[12]\\d))))|[2468]([048]-(0(2-(0[1-9]|[12]\\d)|[13578]-(0[1-9]|3[01]|[12]\\d)|[469]-(0[1-9]|30|[12]\\d))|1(1-(0[1-9]|30|[12]\\d)|[02]-(0[1-9]|3[01]|[12]\\d)))|[1235679]-(0(2-(0[1-9]|1\\d|2[0-8])|[13578]-(0[1-9]|3[01]|[12]\\d)|[469]-(0[1-9]|30|[12]\\d))|1(1-(0[1-9]|30|[12]\\d)|[02]-(0[1-9]|3[01]|[12]\\d)))))|[1235679](0([0-35679]-(0(2-(0[1-9]|1\\d|2[0-8])|[13578]-(0[1-9]|3[01]|[12]\\d)|[469]-(0[1-9]|30|[12]\\d))|1(1-(0[1-9]|30 |