Sistema para usar o Claude como assistente pessoal, integrando notas diárias, Google Calendar e Gmail.
- Crie uma pasta para seu vault (ex:
claude-vault) - Copie este arquivo para dentro da pasta
| # Creating a spine table with three columns ---- | |
| # customer_id: identifier of the customer, for which we are going to predict the next month sales | |
| # year_month: reference date | |
| # sales: the metric we want to predict | |
| spine_tbl <- tibble( | |
| customer_id = c(rep("João", 24), rep("Denise", 24)), | |
| year_month = c( seq( ymd("2021-11-01"), ymd("2023-10-01"), by = '1 month' ), seq( ymd("2021-11-01"), ymd("2023-10-01"), by = '1 month' ) ), | |
| sales = sample(100:1000, 48, replace = TRUE) | |
| ) |
| # Import lpSolve package | |
| library(lpSolve) | |
| # | |
| # Set up the problem: maximize | |
| # z = 2*x1 + 11*x2 subject to | |
| # 2*x1 + 2*x2 <= 20 | |
| # x1 + 2*x2 <= 12 | |
| # 3*x1 + 4*x2 <= 36 | |
| # x1 <= 5 |
| # Work Directory (/home/user/python_project/): | |
| # - data | |
| # - data/employee.csv | |
| # - src | |
| # | |
| import os | |
| # WORK_DIR="/home/user/python_project/" | |
| WORK_DIR = os.getcwd() |
| # For Windows users# Note: <> denotes changes to be made | |
| #Create a conda environment | |
| conda create --name <environment-name> python=<version:2.7/3.5> | |
| #To create a requirements.txt file: | |
| conda list #Gives you list of packages used for the environment | |
| conda list -e > requirements.txt #Save all the info about packages to your folder |
| library(dplyr) | |
| # creating a toy dataset | |
| data = tibble(vehicle = c("car", "bus", "bike", "bus", "car", "bike"), | |
| target = c(23,34,56,78,33,65)) | |
| # print dataframe | |
| data | |
| # OUTPUT |
| import pandas as pd | |
| from sklearn.tree import DecisionTreeClassifier | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.pipeline import Pipeline | |
| from sklearn.impute import SimpleImputer | |
| from category_encoders import OneHotEncoder | |
| from sklearn.model_selection import KFold | |
| from sklearn.model_selection import cross_validate | |
| from sklearn.model_selection import GridSearchCV | |
| from sklearn.compose import ColumnTransformer |
| import pandas as pd | |
| from sklearn.tree import DecisionTreeClassifier | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.pipeline import Pipeline | |
| from sklearn.impute import SimpleImputer | |
| from category_encoders import OneHotEncoder | |
| from sklearn.model_selection import KFold | |
| from sklearn.model_selection import cross_validate | |
| from sklearn.model_selection import GridSearchCV |
| import pandas as pd | |
| from sklearn.tree import DecisionTreeClassifier | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.pipeline import Pipeline | |
| from sklearn.impute import SimpleImputer | |
| from category_encoders import OneHotEncoder | |
| from sklearn.model_selection import KFold | |
| from sklearn.model_selection import cross_validate | |
| # lendo o dataset |
| import pandas as pd | |
| from sklearn.tree import DecisionTreeClassifier | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.pipeline import Pipeline | |
| from sklearn.impute import SimpleImputer | |
| from category_encoders import OneHotEncoder | |
| # lendo o dataset | |
| df = pd.read_csv("train.csv") |