Created
April 25, 2024 20:19
-
-
Save vuddameri/ca88918e084bea585d38dc96a6d893dc to your computer and use it in GitHub Desktop.
sympy-Assignment4-Pb7.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "provenance": [], | |
| "authorship_tag": "ABX9TyOxFJvKj2RupszM1FnzEJuh", | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| }, | |
| "language_info": { | |
| "name": "python" | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/vuddameri/ca88918e084bea585d38dc96a6d893dc/sympy-assignment4-pb7.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 106 | |
| }, | |
| "id": "Vhy1zEEAwdn6", | |
| "outputId": "f85dbb3b-f523-4f32-80a0-5309fc9d23c8" | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "error", | |
| "ename": "SyntaxError", | |
| "evalue": "invalid syntax (<ipython-input-1-299510c2fa03>, line 1)", | |
| "traceback": [ | |
| "\u001b[0;36m File \u001b[0;32m\"<ipython-input-1-299510c2fa03>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m <h1>\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" | |
| ] | |
| } | |
| ], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "<h1> Problem 7 from Assignment 4" | |
| ], | |
| "metadata": { | |
| "id": "ZUYRceS2woja" | |
| } | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [], | |
| "metadata": { | |
| "id": "kJSD_M6Awi_Y" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# Attempt 2 using help from Sympy documentation\n", | |
| "from sympy import Function, dsolve, Derivative, checkodesol\n", | |
| "from sympy.abc import t\n", | |
| "y = Function('y')\n", | |
| "result = dsolve(Derivative(y(t), t, t) + 2*Derivative(y(t),t)+26*y(t), y(t))\n", | |
| "checkodesol(Derivative(y(t), t, t) + 2*Derivative(y(t),t)+26*y(t), result)\n" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "WdojGx2iyZfV", | |
| "outputId": "a17e748a-e3b7-4e59-ec94-9ba618cb09b6" | |
| }, | |
| "execution_count": 23, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(True, 0)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 23 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "result" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 38 | |
| }, | |
| "id": "-ylUTxIA0XQe", | |
| "outputId": "57794087-6be1-44ff-8d3f-e4c7f92984c4" | |
| }, | |
| "execution_count": 24, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Eq(y(t), (C1*sin(5*t) + C2*cos(5*t))*exp(-t))" | |
| ], | |
| "text/latex": "$\\displaystyle y{\\left(t \\right)} = \\left(C_{1} \\sin{\\left(5 t \\right)} + C_{2} \\cos{\\left(5 t \\right)}\\right) e^{- t}$" | |
| }, | |
| "metadata": {}, | |
| "execution_count": 24 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "constants = result.subs(t, 0).subs(y(0), 6).subs(Derivative(y(t)).subs(t, 0), 0)" | |
| ], | |
| "metadata": { | |
| "id": "6Zn6CfKF0rBI" | |
| }, | |
| "execution_count": 27, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "constants" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 38 | |
| }, | |
| "id": "Udz-Jkwr0t_J", | |
| "outputId": "d92d3505-4eae-4a2d-b7bd-a7f20d7c253b" | |
| }, | |
| "execution_count": 28, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Eq(6, C2)" | |
| ], | |
| "text/latex": "$\\displaystyle 6 = C_{2}$" | |
| }, | |
| "metadata": {}, | |
| "execution_count": 28 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# Attempt 2 using help from Sympy documentation\n", | |
| "from sympy import Function, dsolve, Derivative, checkodesol\n", | |
| "from sympy.abc import t # Independent variable\n", | |
| "x = Function('x')\n", | |
| "result = dsolve(Derivative(x(t), t, t) + 2*Derivative(x(t),t)+26*x(t), x(t),ics={x(t).diff(t).subs(t, 0): 0,x(t).subs(t, 0): 6})\n", | |
| "\n", | |
| "checkodesol(Derivative(x(t), t, t) + 2*Derivative(x(t),t)+26*x(t), result)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "r_uEbnQZ1NAO", | |
| "outputId": "52afbe50-3684-4557-dba4-85065a79e2ff" | |
| }, | |
| "execution_count": 31, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(True, 0)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 31 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [], | |
| "metadata": { | |
| "id": "MCNjIeJBydB_" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "result" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 58 | |
| }, | |
| "id": "w4xCYwYL1wxq", | |
| "outputId": "3f76628f-23a6-48c3-ef45-e6d0fa1e0a7f" | |
| }, | |
| "execution_count": 32, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Eq(x(t), (6*sin(5*t)/5 + 6*cos(5*t))*exp(-t))" | |
| ], | |
| "text/latex": "$\\displaystyle x{\\left(t \\right)} = \\left(\\frac{6 \\sin{\\left(5 t \\right)}}{5} + 6 \\cos{\\left(5 t \\right)}\\right) e^{- t}$" | |
| }, | |
| "metadata": {}, | |
| "execution_count": 32 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "<h1> Non-Homogeneous Equation x\" + 2x' + 26x -82 cos(4t) = 0" | |
| ], | |
| "metadata": { | |
| "id": "0VKXvK2-4DBJ" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "from sympy import Function, dsolve, Derivative, cos, checkodesol\n", | |
| "from sympy.abc import t # Independent variable\n", | |
| "x = Function('x')\n", | |
| "result = dsolve(Derivative(x(t), t, t) + 2*Derivative(x(t),t)+26*x(t)-82*cos(4*t), x(t),ics={x(t).diff(t).subs(t, 0): 0,x(t).subs(t, 0): 6})\n", | |
| "checkodesol(Derivative(x(t), t, t) + 2*Derivative(x(t),t)+26*x(t)-82*cos(4*t), result)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "K4PMIITw4UkO", | |
| "outputId": "0fa90581-355b-4834-d404-da6ce6186036" | |
| }, | |
| "execution_count": 33, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(True, 0)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 33 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# The solution to the non-homogeneous equation is\n", | |
| "result" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 38 | |
| }, | |
| "id": "vApCWNwB45uC", | |
| "outputId": "ffb33080-82e8-4039-b587-59af5dfef9e9" | |
| }, | |
| "execution_count": 34, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Eq(x(t), (-3*sin(5*t) + cos(5*t))*exp(-t) + 4*sin(4*t) + 5*cos(4*t))" | |
| ], | |
| "text/latex": "$\\displaystyle x{\\left(t \\right)} = \\left(- 3 \\sin{\\left(5 t \\right)} + \\cos{\\left(5 t \\right)}\\right) e^{- t} + 4 \\sin{\\left(4 t \\right)} + 5 \\cos{\\left(4 t \\right)}$" | |
| }, | |
| "metadata": {}, | |
| "execution_count": 34 | |
| } | |
| ] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment