Skip to content

Instantly share code, notes, and snippets.

@vuddameri
Created April 28, 2024 00:29
Show Gist options
  • Select an option

  • Save vuddameri/873c92e824f55f5fb326fb726c8da2de to your computer and use it in GitHub Desktop.

Select an option

Save vuddameri/873c92e824f55f5fb326fb726c8da2de to your computer and use it in GitHub Desktop.
Assignment4-Problem1.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/vuddameri/873c92e824f55f5fb326fb726c8da2de/assignment4-problem1.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"id": "51e3d95c",
"metadata": {
"id": "51e3d95c"
},
"source": [
"<h1> Problem 1: Solution of ODE Using sympy"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "693e71c6",
"metadata": {
"id": "693e71c6"
},
"outputs": [],
"source": [
"from sympy import Eq, Function, symbols, Derivative, dsolve,diff\n",
"from sympy.abc import t\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "60cfd2bb",
"metadata": {
"id": "60cfd2bb",
"outputId": "f2c8e580-411f-45de-8b33-8fb2239099e2"
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle x{\\left(t \\right)} = \\left(C_{1} \\sin{\\left(78.0000088504963 t \\right)} + C_{2} \\cos{\\left(78.0000088504963 t \\right)}\\right) e^{- 17.77635 t}$"
],
"text/plain": [
"Eq(x(t), (C1*sin(78.0000088504963*t) + C2*cos(78.0000088504963*t))*exp(-17.77635*t))"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# define the independent variable\n",
"x = Function('x')\n",
"#solve ODE\n",
"odex = 100*Derivative(x(t),t,t)+3555.27*Derivative(x(t),t)+640000*x(t)\n",
"result = dsolve(eq=odex,func=x(t))\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95dd8f34",
"metadata": {
"id": "95dd8f34",
"outputId": "8f7888cc-2fa9-4e42-c871-4fee7a43eac3"
},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle x{\\left(t \\right)} = 0.0941025534249449 e^{- 17.77635 t} \\sin{\\left(78.0000088504963 t \\right)}$"
],
"text/plain": [
"Eq(x(t), 0.0941025534249449*exp(-17.77635*t)*sin(78.0000088504963*t))"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Add the initial conditions to get the constants C1 and C2\n",
"t = symbols('t')\n",
"x = Function('x')(t)\n",
"ode = 100* x.diff(t,t) + 3555.27*x.diff(t) + 640000*x\n",
"icx = {x.subs(t, 0): 0, x.diff(t).subs(t, 0): 7.34}\n",
"result1 = dsolve(eq=ode, ics=icx,func=x)\n",
"result1"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc99d372",
"metadata": {
"id": "dc99d372",
"outputId": "525878e1-87b9-4e01-b649-682c62450e1e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Eq(x(t), 0.0941025534249449*exp(-17.77635*t)*sin(78.0000088504963*t))\n"
]
}
],
"source": [
"print(result1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5f4148b5",
"metadata": {
"id": "5f4148b5"
},
"outputs": [],
"source": [
"# Create a lambda function for plotting\n",
"x = lambda t: 0.1*np.exp(-17.78*t)*np.sin(78.0*t)\n",
"t = np.arange(0,0.5,0.005)\n",
"xt = x(t)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "faa21d2f",
"metadata": {
"id": "faa21d2f",
"outputId": "72bc826f-aa85-4bd8-b150-69521bdfb551"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmyElEQVR4nO3dfZyVdZ3/8ddn7rhHEHAGAR1AktA0FYXMclqjdVx3qd9i3mRudoNWttnWpuX+2trf7i/3sdkvLVeW1G52W900S7ZIM9uT6UqrAlowkAMWkIggAzgwwNx8fn98z2kO4wDnXHNd5/b9fDyux5lz3Z3vl9Hznu/3e13fy9wdERGRfNUUuwAiIlKeFCAiIhKJAkRERCJRgIiISCQKEBERiaSu2AUopIkTJ3pzc3OkY/fu3cuoUaPiLVAZqMZ6V2OdoTrrXY11hvzr/cwzz+xw90kD11dVgDQ3N/P0009HOjaVStHS0hJvgcpANda7GusM1Vnvaqwz5F9vM/vdYOvVhSUiIpEoQEREJBIFiIiIRKIAERGRSBQgIiISiQJEREQiUYCIiEgkCpCY7NkDt94Kjz8OPT3FLo2ISPIUIDG59164/np4y1tgwgS49FJ49dVil0pEJDkKkJg8/zwMGwb33QcXXQTf/W5ojYiIVCoFSEza22HmTFi0CL72tbBu3brilklEJEkKkJi0t8NJJ4WfJ0yAiRMVICJS2RQgMejrgw0b+gME4OSTFSAiUtkUIDHYuhW6ug4NkNmzYf364pVJRCRpCpAYtLeH14EBsm0bdHQUp0wiIklTgMRgw4bwOrALC9QKEZHKpQCJQXs71NXBtGn962bPDq8aBxGRSqUAiUF7O0yfHkIkY/p0qK9XC0REKpcCJAbZl/Bm1NXBrFlqgYhI5VKADJH74AECupRXRCqbAmSItm8Pc14NFiCzZ4dw6e4ufLlERJKmABmiwS7hzZg9O8zM+8ILhS2TiEghKECG6GgBAurGEpHKpAAZog0boKYGmptfuy1zL4gCREQqkQJkiNrb4YQToKHhtduOOQaamhQgIlKZihogZnahma03s3Yzu3GQ7WZmt6W3P2dmZ2ZtG2dm95vZOjNrM7M3Fbb0weGuwMrQnFgiUqmKFiBmVgvcDrQCc4DLzWzOgN1agVnpZTFwR9a2W4GH3H02cDrQlnihB5FLgLS1hct9RUQqSTFbIOcA7e6+0d0PAvcCCwfssxD4tgcrgHFmNtnMxgJvBe4CcPeD7r6rgGUHYOfOsBwpQE4+OUyouGNH4colIlIIdUffJTFTgM1Z77cA83LYZwrQA2wHvmFmpwPPAB93970DP8TMFhNaLzQ2NpJKpSIVtrOz8zXHrls3BjiLrq5fkUq9MuhxBw8eC5zGPfes4rTTdkf67GIarN6VrhrrDNVZ72qsM8RX72IGiA2ybmBHz+H2qQPOBD7m7r80s1uBG4H//Zqd3ZcCSwHmzp3rLS0tkQqbSqUYeOzWreH1Xe96A6ecMvhxTU1www0wadIZRPzoohqs3pWuGusM1VnvaqwzxFfvYnZhbQGy5q9lKvBijvtsAba4+y/T6+8nBEpBbdkSXk844fD7NDWF15deSr48IiKFVMwAeQqYZWbTzawBuAxYNmCfZcBV6aux5gO73X2ru78EbDaz9J0WXACsLVjJ03buDJMmjh59+H2OOQaGDVOAiEjlKVoXlrv3mNl1wMNALXC3u68xs2vT25cAy4GLgHZgH3B11ik+BnwnHT4bB2wriI4OOPZYsME62tLMQitEASIilaaYYyC4+3JCSGSvW5L1swMfPcyxq4G5SZbvaHbuhPHjj76fAkREKpHuRB+Cjg4FiIhULwXIEGS6sI5GASIilUgBMgT5dGFt3x6mdhcRqRQKkCHIpwvLPYSIiEilUIBE1NsLu3fn3oUF6sYSkcqiAIlo9+7Qqsi1BQIKEBGpLAqQiDo6wqsCRESqlQIkokyA5NKF1dgYXhUgIlJJFCAR7dwZXnNpgYwYAWPHKkBEpLIoQCLKpwsLdC+IiFQeBUhE+XRhgQJERCqPAiSifLqwQAEiIpVHARJRRwcMHx6WXChARKTSKEAiynUerIymJtizB/btS65MIiKFpACJKNd5sDIy94Js25ZMeURECk0BElGu82Bl6GZCEak0CpCIdu7MvwsLFCAiUjkUIBGpBSIi1U4BElG+ATJpUng+ugJERCqFAiSC7m7o7MyvC6uuLoSIAkREKoUCJIJ8pzHJ0L0gIlJJFCARKEBERBQgkWSmMcmnCwsUICJSWRQgEQy1BeIef5lERApNARLBUALk4EHYtSv2IomIFJwCJIKhdGGBurFEpDIoQCLItEDGjcvvOAWIiFQSBUgEHR0wejTU1+d3XCZAtm6Nv0wiIoWmAIkg33mwMiZNCq87dsRbHhGRYihqgJjZhWa23szazezGQbabmd2W3v6cmZ05YHutma0ysx8WrtT5T2OSMX58mM5EASIilaBoAWJmtcDtQCswB7jczOYM2K0VmJVeFgN3DNj+caAt4aK+RtQAqa2FCRMUICJSGYrZAjkHaHf3je5+ELgXWDhgn4XAtz1YAYwzs8kAZjYV+BPgzkIWGqJ3YQFMnAjbt8dbHhGRYqgr4mdPATZnvd8CzMthnynAVuArwKeBMUf6EDNbTGi90NjYSCqVilTYzs7OPxy7bdubaG7eSSq1Pu/z1Ne/kfZ2J5V6NlI5Ci273tWiGusM1VnvaqwzxFfvYgaIDbJu4D3ag+5jZhcDL7v7M2bWcqQPcfelwFKAuXPnekvLEXc/rFQqRebYvXthzpzJtLRMzvs8M2dCeztELUehZde7WlRjnaE6612NdYb46l3MLqwtwLSs91OBF3Pc583An5nZbwldX39kZv+WXFH7dXXB/v1D68LSGIiIVIJiBshTwCwzm25mDcBlwLIB+ywDrkpfjTUf2O3uW939M+4+1d2b08f9zN2vLESho05jkjFpUggQzYclIuWuaF1Y7t5jZtcBDwO1wN3uvsbMrk1vXwIsBy4C2oF9wNXFKm9GZhqTqAEycSL09MDu3fnfyS4iUkqKOQaCuy8nhET2uiVZPzvw0aOcIwWkEijeoDItkKF0YUFohShARKSc6U70PA21Cys7QEREypkCJE9xdGGBAkREyp8CJE9D7cLSfFgiUikUIHnKBMgxx0Q7PtMC0d3oIlLuFCB56uwMU7nXRPyXGz0aGhrUAhGR8qcAyVMmQKIy082EIlIZFCB5GmqAgAJERCqDAiRPcQRI5m50EZFypgDJU1wtEA2ii0i5U4DkSV1YIiKBAiRPcQVIR0eYE0tEpFwpQPIUV4BA/13tIiLlSAGSp7gG0UHdWCJS3hQgeYqzBaKBdBEpZwqQPBw8CN3d8QWIWiAiUs4UIHno7AyvChAREQVIXhQgIiL9FCB5iCtAhg2DMWMUICJS3hQgeYgrQEB3o4tI+VOA5CHuAFELRETKmQIkDwoQEZF+CpA8xBkgmpFXRMqdAiQPaoGIiPRTgOQh7gDZuxe6uoZ+LhGRYlCA5CETIKNGDf1cuhdERMqdAiQPnZ0wfDjU1Q39XAoQESl3CpA8xDGRYoZm5BWRcqcAyUOcAaIWiIiUu6MGiJlNz2VdFGZ2oZmtN7N2M7txkO1mZreltz9nZmem108zs/8yszYzW2NmH4+jPEeTRIDobnQRKVe5tEC+N8i6+4f6wWZWC9wOtAJzgMvNbM6A3VqBWellMXBHen0P8El3fz0wH/joIMfGLs4AGT8ezNQCEZHyddjhYDObDZwCHGNm/ytr01hgeAyffQ7Q7u4b0593L7AQWJu1z0Lg2+7uwAozG2dmk919K7AVwN1fNbM2YMqAY2MXZ4DU1sKECWqBiEj5OtL1RCcDFwPjgD/NWv8q8KEYPnsKsDnr/RZgXg77TCEdHgBm1gycAfxysA8xs8WE1guNjY2kUqlIhe3s7GTbtk6OP76LVGpNpHMMNHLk2bS17SWVSjT3hqSzszPyv1m5qsY6Q3XWuxrrDPHV+0gBssjd32tmn3X3/zvkT3otG2Sd57OPmY0mdLFd7+57BvsQd18KLAWYO3eut7S0RCpsKpXCfTTNzaOJeo6BTjwRYBQtLcfFcr4kpFKp2OpbLqqxzlCd9a7GOkN89T7SGMhZZnYicKmZjTezY7OXIX9yaE1My3o/FXgx133MrJ4QHt9x9wdiKM9RxdmFBZrORETK25ECZAnwEDAbeGbA8nQMn/0UMMvMpptZA3AZsGzAPsuAq9JXY80Hdrv7VjMz4C6gzd2/HENZchJ3gEyapDEQESlfh+3CcvfbgNvM7A53/3DcH+zuPWZ2HfAwUAvc7e5rzOza9PYlwHLgIqAd2AdcnT78zcB7gV+Z2er0us+6+/K4y5nR2xvmrYq7BfLKK9DXBzW6I0dEysxRJ+VIIjyyzr2cEBLZ65Zk/ezARwc57nEGHx9JzP79tUD8AdLbC7t3h8t6S0FnJ2zcCJs2QUcHTJhQW+wiiUiJimFWp+rQ1RV/gGSmM9m+vTQC5Ne/hnPPhVdf7V83f/4cWlvDPSsiItnUcZKjJAKk1KYzuemm0JV2zz3w5JNw882wYsUEbr+92CUTkVKUy1Qmr7nD28xakihMKUu6BVJsK1bAsmXw138Nl10G8+fDpz8N8+a9wqc+FVonIiLZcmmBfNfMbkhfCTXCzL4KfDHpgpWaSm+B3HRTCLSPZ80qZgY33LCOcePg8sv18CsROVQuATKPcC/GfxMuvX2RcBVUVankFsijj8LPfhZCZGD9xo/v5pvfDC2QW24pSvFEpETlEiDdQBcwgjAH1gvu3pdoqUpQEgEyciSMGFHcFog7fPazMG0aXHPN4PtceCG84x3wL/8CPT2FLZ+IlK5cAuQpQoCcDZxHmDV3yLPxlpskAgSKfzPhY4/B//wPfO5z4WmLh3PttbBlCyxP7E4bESk3uQTIB9z9c+7e7e4vuftC4MGkC1ZqkgqQYk9n8tBD4RG9l1565P0uvhiOPx6WLDnyfiJSPY4aIO7+mmlL3P1fkylO6arUFsgjj4QrrsaMOfJ+9fXwwQ+GwHnhhcKUTURKm+4DyVFXVy11ddDQEO95i9kCeeUVWLkSFizIbf8PfjBcmfX1rydbLhEpDwqQHHV11TJmTPx3ZBezBfLoo2EQPdcAmTYtdGXdfTccPJhs2USk9ClActTVVRt79xWEFkhnJ+zfH/+5j+anP4WxY+Hss3M/5tprYds2+MEPEiuWiJQJBUiOkgwQKHw3lnsY/3jb28Igeq7e8Y7QEvnXqhsFE5GBFCA52r8/mQDJ3ExY6ADZsAF++9vcu68yamvhkkvgJz+BXbuSKJmIlAsFSI4qrQXyyCPhNd8AAXj3u8MYyLKBj/8SkaqiAMlRUgFSrOlMHnkETjgBZs3K/9hzzgnH3ndf/OUSkfKhAMlRJbVAenvD3FcLFkS7qswMFi1SN5ZItVOA5CipADn22PCFXMgWyDPPhKcgRum+ylA3logoQHKUVIDU1oYQKWQLZMWK8PrWt0Y/h7qxREQBkgP35AIECn8z4apV0NgIkydHP4e6sUREAZKDri5wt8QCpNDTmaxaBWecMfTzqBtLpLopQHLQ2RleK6EFcuAArFkTT4CoG0ukuilAcpB0gBSyBbJmTXgoVBwBkt2NtXv30M8nIuVFAZKDV18Nr0m2QHbsgL4CPOdx1arwGkeAQLgrvdS6sQ4eDA+/evZZSKVg06Zil0ikMilAclCIFkhvb2H+il+1Kjz7Y8aMeM43b16YG6sUurF27YK//dsQyNOmwRvfGOb6OvFEOP308Mz3deuKXUqRyqEAyUEhAgQKMw6yalX4Mq2J6Tef6cZ6+OHidWP19sIXvwjNzfB3fwcXXBCe337//WHG4S99CcaPh3/8Rzj1VLjuuuI+BVKkUihAclCIQXRI/kuttzd068TVfZWxaFHoNvrP/4z3vLk4eBCuvBI++1k4//wQkA88AIsXw5//eQiTT34ydGW9+GKYjn7JEjjpJPja1wrTbShSqRQgOaiUFkh7O+zdG3+AzJ8PU6YUvhtr3z545zvh3ntD6+LBB0O31eEcd1wIjeeeC11vH/sYtLbC1q2FKrFIZVGA5KBSWiBxD6Bn1NT0d2Pt2RPvuQ9n3z648MLwjPalS+HTn8792DlzwnF33AG/+AW84Q0hfEQkP3k8Sih+ZnYhcCtQC9zp7jcP2G7p7RcB+4D3ufvKXI6NU6FaIIUIkPr68AUat0sugVtvDd1Y73lP/OfP5h66oh5/HO65By69NP9zmIVztLTAFVeElsyHPwy33BJ3afPT0QEbN8ILL8DOneG+nf37w0O/xo0Ly6RJMH16mEkgrrEskSiKFiBmVgvcDiwAtgBPmdkyd1+btVsrMCu9zAPuAObleGxsOjvBzBkxIuYHoqeNGgUjR4ZHxSZp9eowiNzQEP+53/Sm0I11773JB8iSJeGJiF/4QrTwyDZ7Njz5ZLhC65Zb4LHH4JOfHEVLSyxFPSL38DtJpeCJJ8Ly0ku5Hz9sWLiabs6csJxySmhNzZoV/lAoJnfo7g4B2NcXxt/cw9xvtbWhfA0NCsByV8wWyDlAu7tvBDCze4GFQHYILAS+7e4OrDCzcWY2GWjO4djYdHbCiBG9mCX3z9XUlN+XR77cQwvkT/80mfPX1ITguOWWMKYwlHm2jmTFCvj4x+Gii+Bv/iaecw4bFq7UWrAArroKrrnmLDZtghtvDNvi1Nsbus0eeCA8V37z5rC+uRne/vZwhdzMmSEYJk6E4cNDGXp6wmXKu3aF/05eeCEszz8fxnS+//3+CwIaGuDkk+H1rw+vJ58cLmU+4QQ4/vj8HmHc1xdaQtu39y8vvxyWHTvC8soroeW0e3dYOjtDqymXCxQaGkIdR448dBk1qv8PqxEjwmvm32L48BBAdXVhqakJLcqamvDfeWbp7Q1LT08Is8xrd3e4+KK7GzZtOpm77+7fntm/t7c/+Pr6wvmyZR6DUFNz6OfX1vavy4Rl9vvMz5ljspfs82Zk12fgkinXYO+zj838/JnPHHmMMIpiBsgUYHPW+y2EVsbR9pmS47EAmNliYDFAY2MjqVQq74K+8kozxx8/jlRqdd7H5mrkyDNYt66PVOrZRM6/fXsD27efy+jRz5NK/T7n4zo7O3P+NzvllBH09s7j85/fwOWXbz76AXnavbueD33oLCZOdK655hkee6wn1vMPGwZLltTzla808/nPT+Eb39jLJz7xG04/fWjXJ7tDe/tofvrTRn72s+PYsWMYDQ29nH12B1dcsYOzztrJpEkHDzmmoyMsgxk+PITD61/fv+7AgRo2bRrJCy+M+sPy+OMjuf/+4fT19X8rmTmjRvUwZkwPo0f3UF/fR12dU1PjHDhwGn19ezh4sIZ9++ro7Kxj375a3AdveY8e3c0xx3QzdmwPY8d2M21aD7Nn9zJiRC/DhvXS0NBHfX04t5ljBn19Rl+f0dNjdHfX0N1tHDhQy4EDNRw4UMP+/bXs31/Ljh01bNmSWV/L/v01HDxYQ3d3DT090ZotZk5dnVNb61n1Hkd9fdcf1meWEAiZsme+5D39+7Q//F4h1Cl8gVs6uPrfZ2/r7bX0/v37Zv/bZn/ZZwdJf7j4IWGTKdvAnzP7ZR8L8Nhj69m1K/y3nM//10dSzAAZ7L9Kz3GfXI4NK92XAksB5s6d6y0R+iZaWiCVShHl2FydfDKsXUtin/HDH4bXSy6ZxXnn5f4Ywnzr/fWvQyo1kyVLZkZ6WNWRXHpp+At8xQo488zz4j15lvHjU3R1TeHDHx7F9defQUsL3HAD/PEf5/4ALndoa4P/+I/Qrfeb34S/mltbQ0vtT/6kllGjJgITE6sHhC6kjRvD3fibNsGWLcbOnfV0dNSza1f4S7ynJyxmHTQ1jWXYMBg7Noy3HHNMaAlNmhRejzsuLBMnQn19PVD4vrK+vv4yd3f3/+Xd13foX/S1taGFkukyq6kx+r86aoHk/78uLf1Xz8RV72IGyBZgWtb7qcCLOe7TkMOxZaWpKTwlMCm/+lV4Pe205D4D4P3vD8sTT8B5MX7Hf/e7Yfn7v4czz4zvvIfT2hrmDVu6NHTLtbaGcYbW1nBvybnnhi/ZTKB0dsKGDeGPgEcfDY8M3rQpbG9pgb/6q3Cl2oQJyZc927Bhr22tHE4q9WxZfJnW1ISuryTG8iQ/xRzCegqYZWbTzawBuAwYOKPSMuAqC+YDu919a47HlpWmptBlsX9/Mudva4OpU8OXXpIuuSRcrXbXXfGdc9s2+MhH4OyzQ0ugUEaNgk98IvwF/41vhL+8v/rVMP4yblz4q3bcuBAKY8aE/uUrrgh3wJ91FvzzP8Pvfx/+MLjmmsKHh0jSitYCcfceM7sOeJjQnrzb3deY2bXp7UuA5YRLeNsJl/FefaRji1CN2GQGnbdtCwOecVu7NpnLdwcaPRouuwz+/d/DZb1DDSz38OXb2Qnf+lZ+A8BxaWiA970vLF1doXX1zDNhks3OztANdMIJYfD7pJPClVDFKKdIoRX1P3N3X04Iiex1S7J+duCjuR5bzpqawutLL8UfIH19oQWyeHG85z2cD3wA7rwzdDl98INDO9e//Vu4ye9LX8qtGyZpI0aEq6Xe/vZil0Sk+HQVdonIDpC4bdoU7twu1BfwvHmhtXP77UOba2rz5jDx4XnnwfXXx1Y8EYmJAqREJBkgbW3htRBdWBAGjm+8MdwkF3V+rL4+uPrqcB3+t74VrqQRkdKiACkRxx0XvniTmNhvbfr2ykJ2AV1xRRgLuOmmMEaQr9tvD1czffnL8T27RETipQApEfX14dr6JFoga9eGgCrkVUC1tXDzzeHS1jvvzO/YtrZwtVVrK3zoQ8mUT0SGTgFSQpKazqStrXDdV9laW+Gtbw1zVmUmpDyaHTvg4ovDZbF33pn7jXsiUngKkBKSRIC4F+4S3oHMwnM6Xn45dEUdzYED8K53hXsnHnwwzNskIqVLAVJCkgiQrVvDBHfFCBAID5tatCg8avZIA+ru4TLjxx+Hb34zHCcipU23O5WQyZPDF/7AydSGohgD6APdfXcIxssvD/MXXX75odu3b4e//MswZ9QXvhBuRBSR0qcAKSFNTeGKpV27YPz4eM5Z6Et4BzNmDPz4x2Fs48orYcuW/sfgPvlkmJ59z57QSolrinYRSZ4CpIRk3wsSV4CsXRvO1dgYz/miGj0afvQjWLjwtY+fnT8/DJifckpxyiYi0ShASkh2gMTV5bR2bThXKVzNNGoU/OQnoUwvvhgGy0eMCBMw6kZBkfKjACkhmQkV4xxIb2sLf/WXipqa8FjdU08tdklEZKh0FVYJybRA4robPfMI0mKOf4hI5VKAlJBjjgkPAIqrBVIKA+giUrkUICXELN57QTIBUgrToItI5VGAlJjJk+MLkLVrw8D11KnxnE9EJJsCpMQ0NcU3BpK5AqtGv2URSYC+WkpM3F1YGv8QkaQoQEpMU1OYkba7e2jn2b073Geh8Q8RSYoCpMRk7gV5+eWhnWfduvCqFoiIJEUBUmLierRtKUyiKCKVTQFSYuK6mbCtLdxTMn360MskIjIYBUiJibMF8rrXQZ0mqxGRhChASkxm1tyhBoiuwBKRpClASsywYXDssWG22qi6uuCFFzT+ISLJUoCUoObmEABRrV8fnmqoFoiIJEkBUoJmzoSNG6MfryuwRKQQFCAlaMaM0ALp7Y12fFtbeEDTrFnxlktEJJsCpATNnBnuRP/976Md39YWzjFsWLzlEhHJVpQAMbNjzewRM3s+/TroE8DN7EIzW29m7WZ2Y9b6fzKzdWb2nJl938zGFazwBTBjRnjdsCHa8WvXavxDRJJXrBbIjcCj7j4LeDT9/hBmVgvcDrQCc4DLzSzztfgIcKq7nwb8BvhMQUpdIDNnhtcoAdLdDc8/r/EPEUlesQJkIfCt9M/fAt45yD7nAO3uvtHdDwL3po/D3X/i7j3p/VYAFfXEi6lTww2AUQbS29uhp0ctEBFJXrHuU250960A7r7VzI4bZJ8pwOas91uAeYPs937gPw73QWa2GFgM0NjYSCqVilTgzs7OyMdG0dh4Dk8+2UkqtTav4x57bCJwKnv3Pk0q1TnkchS63qWgGusM1VnvaqwzxFfvxALEzH4KNA2y6aZcTzHIOh/wGTcBPcB3DncSd18KLAWYO3eut7S05Pjxh0qlUkQ9NopTToGdO0fS0jJYth7e44+H1yuvnMuoUUMvR6HrXQqqsc5QnfWuxjpDfPVOLEDc/e2H22Zm28xscrr1MRkYbPLyLcC0rPdTgT/cn21mfwFcDFzg7k6FmTkTnnoq/+OefTYMwscRHiIiR1KsMZBlwF+kf/4L4MFB9nkKmGVm082sAbgsfRxmdiFwA/Bn7r6vAOUtuJkzoaMjLPlYuRLOOiuZMomIZCtWgNwMLDCz54EF6feY2fFmthwgPUh+HfAw0AZ8193XpI//GjAGeMTMVpvZkkJXIGmZS3nzGUjv6Aj7n3lmMmUSEclWlEF0d38FuGCQ9S8CF2W9Xw4sH2S/kxItYAnIXMq7cWPuLYrVq8OrAkRECkF3opeozIOg8rkXZOXK8HrGGfGXR0RkIAVIiRozBo47Lv8AmTYNJk1KrlwiIhkKkBI2Y0Z+YyArV6r7SkQKRwFSwmbOzL0F0tkZngOiABGRQlGAlLAZM2DzZjh48Oj7PvtseIiUAkRECkUBUsJmzoS+Pvjd746+76pV4VUBIiKFogApYfncC7JyJTQ2wuTJyZZJRCRDAVLC8pnWfeXKcPmuDTaDmIhIAhQgJaypCYYPP3oLZP9+WLNG3VciUlgKkBJWUwOvex0899yR9/v1r8MzQBQgIlJICpAS19ICv/hFaGUcTuYOdAWIiBSSAqTELVgQwuOJJw6/zy9/CePGQXNzoUolIqIAKXnnnx8eb/vII4Nv7+mBZcvgwgs1gC4ihaUAKXFjxsC55x4+QH7+c9ixAy65pLDlEhFRgJSBBQvCOMf27a/ddt994emDra2FL5eIVDcFSBlYsCC8Pvrooet7euB734OLL4YRIwpfLhGpbgqQMjB3bhgkH9iNlem+eve7i1IsEalyCpAyUFsLF1wQAsS9f726r0SkmBQgZWLBgjAz7/r14X1PDzzwgLqvRKR4FCBlIjMOkunG+vnPw6C6rr4SkWJRgJSJGTPC5Iqf+ARMnAiLFqn7SkSKq67YBZDc3XUXPPQQ7NkTlre8BUaOLHapRKRaKUDKyPnnh0VEpBSoC0tERCJRgIiISCQKEBERiUQBIiIikShAREQkEgWIiIhEogAREZFIFCAiIhKJefb0rhXOzLYDv4t4+ERgR4zFKRfVWO9qrDNUZ72rsc6Qf71PdPdJA1dWVYAMhZk97e5zi12OQqvGeldjnaE6612NdYb46q0uLBERiUQBIiIikShAcre02AUokmqsdzXWGaqz3tVYZ4ip3hoDERGRSNQCERGRSBQgIiISiQJkADO70MzWm1m7md04yHYzs9vS258zszOLUc445VDn2Wb2pJkdMLNPFaOMScih3u9J/46fM7P/NrPTi1HOOOVQ54Xp+q42s6fN7LxilDNuR6t31n5nm1mvmS0qZPmSkMPvusXMdqd/16vN7HN5f4i7a0kvQC2wAZgBNADPAnMG7HMR8GPAgPnAL4td7gLU+TjgbOAfgE8Vu8wFrPe5wPj0z61V8rseTf/Y6GnAumKXuxD1ztrvZ8ByYFGxy12A33UL8MOhfI5aIIc6B2h3943ufhC4F1g4YJ+FwLc9WAGMM7PJhS5ojI5aZ3d/2d2fArqLUcCE5FLv/3b3jvTbFcDUApcxbrnUudPT3y7AKKASrrLJ5f9rgI8B3wNeLmThEpJrnYdEAXKoKcDmrPdb0uvy3aecVFp9cpVvvT9AaHmWs5zqbGbvMrN1wI+A9xeobEk6ar3NbArwLmBJAcuVpFz/+36TmT1rZj82s1Py/RAFyKFskHUD/wLLZZ9yUmn1yVXO9TaztxEC5IZES5S8nOrs7t9399nAO4H/k3ShCiCXen8FuMHde5MvTkHkUueVhDmuTge+Cvwg3w9RgBxqCzAt6/1U4MUI+5STSqtPrnKqt5mdBtwJLHT3VwpUtqTk9bt298eAmWY2MemCJSyXes8F7jWz3wKLgH82s3cWpHTJOGqd3X2Pu3emf14O1Of7u1aAHOopYJaZTTezBuAyYNmAfZYBV6WvxpoP7Hb3rYUuaIxyqXMlOmq9zewE4AHgve7+myKUMW651PkkM7P0z2cSBmDLPTiPWm93n+7uze7eDNwPfMTdf1DwksYnl991U9bv+hxCHuT1u66LqbAVwd17zOw64GHCVQx3u/saM7s2vX0J4QqNi4B2YB9wdbHKG4dc6mxmTcDTwFigz8yuJ1zRsadY5R6qHH/XnwMmEP4aBejxMp65Ncc6/znhD6RuoAu4NGtQvSzlWO+KkmOdFwEfNrMewu/6snx/15rKREREIlEXloiIRKIAERGRSBQgIiISiQJEREQiUYCIiEgkChCRCMxsnJl95AjbR5jZz82sNsEyNJjZY2ZWl34/ycweSurzRAZSgIhEMw44bIAQ5pB6IMmpMdKT5D0KXJp+vx3YamZvTuozRbIpQESiuZkwzcdqM/unQba/B3gQwMwmp1sKq83s12b2lvT6d6Sfs7LSzO4zs9Hp9Wennz/yrJn9j5mNMbNT0j+vTj+vY1b6c36Q/iwO814kMbqRUCQCM2smPEvh1EG2NQCb3L0p/f6TwHB3/4d0l9ZIYBhhmpRWd99rZjek190MrCPcAf6UmY0lzHjw/4AV7v6d9Plr3b0rfb6X3H1S+rOmAA+5+xuS/RcQ0VQmIkmYCOzKev8UcLeZ1QM/cPfVZnY+MAd4Ij1NSgPwJHAysDX9/BUy08WY2ZPATWY2ldA19nx6e6+ZHTSzMe7+KuFZFscXopIi6sISiV8XMDzzJj2r7VuB3wP/amZXEabbfsTd35he5rj7B9LrB5ti/d+BP0uf+2Ez+6OszcOA/emfh6f3EUmcAkQkmleBMYNtSD/FsNbMhgOY2YnAy+7+deAu4EzCEw7fbGYnpfcZaWavI3RfHW9mZ6fXjzGzOjObAWx099sIs6qelt4+Adju7pmnRb4O+HUiNRYZQAEiEkH62SBPpAfFBxtE/wlwXvrnFmC1ma0izHZ7a/qKqfcB95jZc4RAmZ2+supS4Ktm9izwCKFVcSnwazNbDcwGvp0+99sIM0ST9f5HcdVT5Eg0iC6SADM7A/grd39vwp/zAPAZd1+ffv8Y4eFXHUc+UmTo1AIRSYC7rwL+K+kbCQmD8pnwmAR8WeEhhaIWiIiIRKIWiIiIRKIAERGRSBQgIiISiQJEREQiUYCIiEgk/x/+U+JmO06kzQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Make plot\n",
"plt.plot(t,xt,color='blue')\n",
"plt.xlabel('t (secs))')\n",
"plt.ylabel('x ft')\n",
"plt.grid()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9098b537",
"metadata": {
"id": "9098b537"
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"colab": {
"provenance": [],
"include_colab_link": true
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment