Last active
April 1, 2025 09:36
-
-
Save TheLurps/ae704899fdb05599c9b4f6f0fd8fce03 to your computer and use it in GitHub Desktop.
DuckDB sampling from parquet and hive partitioned parquet files
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "id": "14e831ab", | |
| "metadata": { | |
| "jupyter": { | |
| "source_hidden": true | |
| } | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "# /// script\n", | |
| "# requires-python = \">=3.12\"\n", | |
| "# dependencies = [\n", | |
| "# \"duckdb\",\n", | |
| "# \"numpy\",\n", | |
| "# \"pandas\",\n", | |
| "# \"pyarrow\",\n", | |
| "# ]\n", | |
| "#\n", | |
| "# [tool.uv]\n", | |
| "# exclude-newer = \"2025-04-01T09:16:45.240871707+02:00\"\n", | |
| "# ///" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "b407c434", | |
| "metadata": {}, | |
| "source": [ | |
| "# Sampling with conn" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "id": "7a226178", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import os\n", | |
| "import duckdb\n", | |
| "import numpy as np\n", | |
| "import pandas as pd\n", | |
| "from tempfile import TemporaryDirectory, NamedTemporaryFile" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "id": "cb90c012", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Python version: 3.12.9 (main, Feb 12 2025, 14:50:50) [Clang 19.1.6 ]\n", | |
| "DuckDB version: 1.2.1\n", | |
| "NumPy version: 2.2.4\n", | |
| "Pandas version: 2.2.3\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(\"Python version:\", os.sys.version)\n", | |
| "print(\"DuckDB version:\", duckdb.__version__)\n", | |
| "print(\"NumPy version:\", np.__version__)\n", | |
| "print(\"Pandas version:\", pd.__version__)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "id": "d253c790", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<duckdb.duckdb.DuckDBPyConnection at 0x7f2fb83da2f0>" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "# required to ensure repeatable results\n", | |
| "conn = duckdb.connect(\":memory:\")\n", | |
| "conn.execute(\"SET threads = 1;\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "c30a8ed0", | |
| "metadata": {}, | |
| "source": [ | |
| "## Generate dummy data" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "id": "94b7fb47", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "np.random.seed(42)\n", | |
| "size = 1_000_000\n", | |
| "df = pd.DataFrame({\n", | |
| " 'range': range(size),\n", | |
| " 'bin': np.random.randint(0, 10, size=size),\n", | |
| "})" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "id": "6567c67e", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "RangeIndex: 1000000 entries, 0 to 999999\n", | |
| "Data columns (total 2 columns):\n", | |
| " # Column Non-Null Count Dtype\n", | |
| "--- ------ -------------- -----\n", | |
| " 0 range 1000000 non-null int64\n", | |
| " 1 bin 1000000 non-null int64\n", | |
| "dtypes: int64(2)\n", | |
| "memory usage: 15.3 MB\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "df.info()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "id": "4f053a1f", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>range</th>\n", | |
| " <th>bin</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>0</td>\n", | |
| " <td>6</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>1</td>\n", | |
| " <td>3</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>2</td>\n", | |
| " <td>7</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>3</td>\n", | |
| " <td>4</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>4</td>\n", | |
| " <td>6</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " range bin\n", | |
| "0 0 6\n", | |
| "1 1 3\n", | |
| "2 2 7\n", | |
| "3 3 4\n", | |
| "4 4 6" | |
| ] | |
| }, | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.head()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "eadd746b", | |
| "metadata": {}, | |
| "source": [ | |
| "## Check if sample is repeatable" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "id": "206096fc", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "# result from previous run\n", | |
| "sample10 = [(32579,),\n", | |
| " (20203,),\n", | |
| " (17919,),\n", | |
| " (23196,),\n", | |
| " (25754,),\n", | |
| " (38699,),\n", | |
| " (35653,),\n", | |
| " (28856,),\n", | |
| " (33818,),\n", | |
| " (40181,)]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "id": "dc110516", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def sample10_mem(df):\n", | |
| " return conn.sql(\"\"\"\n", | |
| " SELECT range\n", | |
| " FROM df\n", | |
| " USING SAMPLE reservoir(10 ROWS)\n", | |
| " REPEATABLE(42);\n", | |
| " \"\"\").fetchall()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "id": "7b1e5796", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "[(32579,),\n", | |
| " (20203,),\n", | |
| " (17919,),\n", | |
| " (23196,),\n", | |
| " (25754,),\n", | |
| " (38699,),\n", | |
| " (35653,),\n", | |
| " (28856,),\n", | |
| " (33818,),\n", | |
| " (40181,)]" | |
| ] | |
| }, | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "sample10_mem_result = sample10_mem(df)\n", | |
| "sample10_mem_result" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "id": "8d2b9acc", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "sample10_mem_repeatable = sample10_mem_result == sample10\n", | |
| "sample10_mem_repeatable" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "id": "1e6d91be", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "435 μs ± 4.31 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "sample10_mem_time = %timeit -o sample10_mem(df)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "80b5ccc2", | |
| "metadata": {}, | |
| "source": [ | |
| "## Sample from parquet file" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "id": "d218f3f8", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "tmp = NamedTemporaryFile(suffix='.parquet')\n", | |
| "parquet_file = tmp.name" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 14, | |
| "id": "846f3e66", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "conn.sql(f\"\"\"\n", | |
| "COPY (FROM df)\n", | |
| "TO '{parquet_file}'\n", | |
| "(FORMAT 'parquet', OVERWRITE);\n", | |
| "\"\"\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "id": "0c4d1180", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "4,8M\t/tmp/tmp51y3qyad.parquet\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "!du -sh $parquet_file" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 16, | |
| "id": "3fa5e83f", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def sample10_parquet(parquet_file):\n", | |
| " return conn.sql(f\"\"\"\n", | |
| " SELECT range\n", | |
| " FROM '{parquet_file}'\n", | |
| " USING SAMPLE reservoir(10 ROWS)\n", | |
| " REPEATABLE(42);\n", | |
| " \"\"\").fetchall()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "id": "a020c3c1", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "[(32579,),\n", | |
| " (20203,),\n", | |
| " (17919,),\n", | |
| " (23196,),\n", | |
| " (25754,),\n", | |
| " (38699,),\n", | |
| " (35653,),\n", | |
| " (28856,),\n", | |
| " (33818,),\n", | |
| " (40181,)]" | |
| ] | |
| }, | |
| "execution_count": 17, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "sample10_parquet_result = sample10_parquet(parquet_file)\n", | |
| "sample10_parquet_result" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "id": "9e456f41", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "sample10_parquet_repeatable = sample10_parquet_result == sample10\n", | |
| "sample10_parquet_repeatable" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 19, | |
| "id": "8dc382eb", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "6.44 ms ± 23.4 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "sample10_parquet_time = %timeit -o sample10_parquet(parquet_file)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 20, | |
| "id": "cadf3c51", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "tmp.close()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "b024ca75", | |
| "metadata": {}, | |
| "source": [ | |
| "## Sample from hive partitioned parquet files" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 21, | |
| "id": "cca724ea", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "tmp = TemporaryDirectory()\n", | |
| "hive_path = tmp.name" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 22, | |
| "id": "6a58be66", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "conn.sql(f\"\"\"\n", | |
| "COPY (FROM df)\n", | |
| "TO '{hive_path}'\n", | |
| "(FORMAT 'parquet', PARTITION_BY bin, OVERWRITE);\n", | |
| "\"\"\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 23, | |
| "id": "fcbc526b", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\u001b[01;34m/tmp/tmpyrj8v5be\u001b[0m\n", | |
| "├── \u001b[01;34mbin=0\u001b[0m\n", | |
| "│ └── data_0.parquet\n", | |
| "├── \u001b[01;34mbin=1\u001b[0m\n", | |
| "│ └── data_0.parquet\n", | |
| "├── \u001b[01;34mbin=2\u001b[0m\n", | |
| "│ └── data_0.parquet\n", | |
| "├── \u001b[01;34mbin=3\u001b[0m\n", | |
| "│ └── data_0.parquet\n", | |
| "├── \u001b[01;34mbin=4\u001b[0m\n", | |
| "│ └── data_0.parquet\n", | |
| "├── \u001b[01;34mbin=5\u001b[0m\n", | |
| "│ └── data_0.parquet\n", | |
| "├── \u001b[01;34mbin=6\u001b[0m\n", | |
| "│ └── data_0.parquet\n", | |
| "├── \u001b[01;34mbin=7\u001b[0m\n", | |
| "│ └── data_0.parquet\n", | |
| "├── \u001b[01;34mbin=8\u001b[0m\n", | |
| "│ └── data_0.parquet\n", | |
| "└── \u001b[01;34mbin=9\u001b[0m\n", | |
| " └── data_0.parquet\n", | |
| "\n", | |
| "11 directories, 10 files\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "!tree $hive_path" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 24, | |
| "id": "ae591e33", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def sample10_hive(hive_path):\n", | |
| " return conn.sql(f\"\"\"\n", | |
| " SELECT range\n", | |
| " FROM read_parquet('{hive_path}/*/*.parquet', hive_partitioning = true)\n", | |
| " USING SAMPLE reservoir(10 ROWS)\n", | |
| " REPEATABLE(42);\n", | |
| " \"\"\").fetchall()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 25, | |
| "id": "7321c7c1", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "[(325557,),\n", | |
| " (201776,),\n", | |
| " (178697,),\n", | |
| " (231953,),\n", | |
| " (257193,),\n", | |
| " (386242,),\n", | |
| " (356196,),\n", | |
| " (287870,),\n", | |
| " (337526,),\n", | |
| " (401396,)]" | |
| ] | |
| }, | |
| "execution_count": 25, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "sample10_hive_result = sample10_hive(hive_path)\n", | |
| "sample10_hive_result" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 26, | |
| "id": "6230109f", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "execution_count": 26, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "sample10_hive_repeatable = sample10_hive_result == [(325557,),\n", | |
| " (201776,),\n", | |
| " (178697,),\n", | |
| " (231953,),\n", | |
| " (257193,),\n", | |
| " (386242,),\n", | |
| " (356196,),\n", | |
| " (287870,),\n", | |
| " (337526,),\n", | |
| " (401396,)]\n", | |
| "sample10_hive_repeatable" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 27, | |
| "id": "52a74e2b", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "6.75 ms ± 28.7 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "sample10_hive_time = %timeit -o sample10_hive(hive_path)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 28, | |
| "id": "be742123", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "tmp.cleanup()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "b11c5371", | |
| "metadata": {}, | |
| "source": [ | |
| "## Results" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 29, | |
| "id": "b34043b7", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>average</th>\n", | |
| " <th>std</th>\n", | |
| " <th>best</th>\n", | |
| " <th>repeatable</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>memory</th>\n", | |
| " <td>0.000435</td>\n", | |
| " <td>0.000004</td>\n", | |
| " <td>0.000432</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>parquet</th>\n", | |
| " <td>0.006443</td>\n", | |
| " <td>0.000023</td>\n", | |
| " <td>0.006420</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>hive</th>\n", | |
| " <td>0.006749</td>\n", | |
| " <td>0.000029</td>\n", | |
| " <td>0.006690</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " average std best repeatable\n", | |
| "memory 0.000435 0.000004 0.000432 True\n", | |
| "parquet 0.006443 0.000023 0.006420 True\n", | |
| "hive 0.006749 0.000029 0.006690 True" | |
| ] | |
| }, | |
| "execution_count": 29, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "pd.DataFrame({\n", | |
| " 'average': [sample10_mem_time.average,\n", | |
| " sample10_parquet_time.average,\n", | |
| " sample10_hive_time.average],\n", | |
| " 'std': [sample10_mem_time.stdev,\n", | |
| " sample10_parquet_time.stdev,\n", | |
| " sample10_hive_time.stdev],\n", | |
| " 'best': [sample10_mem_time.best,\n", | |
| " sample10_parquet_time.best,\n", | |
| " sample10_hive_time.best],\n", | |
| " 'repeatable': [sample10_mem_repeatable,\n", | |
| " sample10_parquet_repeatable,\n", | |
| " sample10_hive_repeatable],\n", | |
| "}, index=['memory', 'parquet', 'hive'])" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3 (ipykernel)", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.12.9" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 5 | |
| } |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import duckdb | |
| import numpy as np | |
| import pandas as pd | |
| from tempfile import TemporaryDirectory, NamedTemporaryFile | |
| conn = duckdb.connect(":memory:") | |
| conn.execute("SET threads = 1;") | |
| # generate data | |
| np.random.seed(42) | |
| size = 1_000_000 | |
| df = pd.DataFrame( | |
| { | |
| "range": range(size), | |
| "bin": np.random.randint(0, 10, size=size), | |
| } | |
| ) | |
| print("sampling from df") | |
| print( | |
| conn.sql(""" | |
| SELECT range | |
| FROM df | |
| USING SAMPLE reservoir(10 ROWS) | |
| REPEATABLE(42); | |
| """).fetchall() | |
| ) | |
| # write to single parquet | |
| parquet_file = NamedTemporaryFile(suffix=".parquet") | |
| conn.sql(f""" | |
| COPY (FROM df) | |
| TO '{parquet_file.name}' | |
| (FORMAT 'parquet', OVERWRITE); | |
| """) | |
| print("sampling from single parquet") | |
| print( | |
| conn.sql(f""" | |
| SELECT range | |
| FROM '{parquet_file.name}' | |
| USING SAMPLE reservoir(10 ROWS) | |
| REPEATABLE(42); | |
| """).fetchall() | |
| ) | |
| parquet_file.close() | |
| # write a hive partitioned parquet files | |
| hive_path = TemporaryDirectory() | |
| conn.sql(f""" | |
| COPY (FROM df) | |
| TO '{hive_path.name}' | |
| (FORMAT 'parquet', PARTITION_BY bin, OVERWRITE); | |
| """) | |
| print("sampling from hive partitioned parquet files") | |
| print( | |
| conn.sql(f""" | |
| SELECT range | |
| FROM read_parquet('{hive_path.name}/*/*.parquet', hive_partitioning = true) | |
| USING SAMPLE reservoir(10 ROWS) | |
| REPEATABLE(42); | |
| """).fetchall() | |
| ) | |
| hive_path.cleanup() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment